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Recent task scheduling algorithms for a generalized workflow job in 
heterogeneous system adopt list-based scheduling. In those algorithms, the 
response time cannot be effectively reduced if the given workflow job is 
data-intensive. If the workflow job is computationally intensive, an attempt 
is made to assign tasks to many processors, which can lead to resource 
starvation. To this end, a task scheduling algorithm that is based on 
clustering tasks, called CMWSL (Clustering for Minimizing the Worst 
Schedule Length) has been proposed. In CMWSL, the lower bound of the 
assignment unit size for each processor is derived in order to suppress the 
total number of executing processors for effective use of processors. After 
the lower bound is derived, the processor as a assignment target is 
determined and then the assignment unit as a task cluster is generated. As 
a final phase of CMWSL, task ordering is performed for every assigned 
task. In this paper, we compare several task ordering methods in CMWSL 
in a real environment to find the best task ordering policy.
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1 Introduction
Recent household computers have high-performance pro-
cessing schemes, e.g., multi-core, hyper-threading tech-
nologies and so on. Such parallel processing schemes en-
able the expansion of conventional applications to scien-
tific and large amount of data processing applications in
household computers. This transition increases the needs
for parallel and distributed processing schemes, e.g., grid
computing[1], utility computing and cloud computing[2].
These computing models require an appropriate execution
method to acquire the optimal value in terms of the response
time or the schedule length, energy consumption, the eco-
nomic cost and throughput. However, to obtain the opti-
mal schedule length has been an NP-complete problem. In
a heterogeneous system where each processing speed and
communication bandwidth is arbitrary, a task assignment
method as well as a task scheduling method are needed be-
cause the actual processing time and communication time
are determined after each task is assigned to a processor.

In various application models, especially for work-flow
type application, called Directed Acyclic Graph (DAG) is
one of currently studied task scheduling fields, also known
as a DAG scheduling problem. DAG scheduling is clas-
sified into two approaches, i.e., list-based scheduling[3, 4,

5, 6] and clustering-based task scheduling[7, 8, 9, 10, 11].
In HEFT (Heterogeneous Earliest Finish Time)[3], which
is the most famous list scheduling for DAG applications
in heterogeneous systems, a scheduling priority is assigned
to each task by using the average processing time and the
average communication time. Then each task is assigned
to a processor by which its completion time is minimized.
Though the critical part of a list scheduling is how to define
the priority for ready tasks, list-based scheduling models
such as HEFT, PEFT[4] and CEFT[5] apply averaged pro-
cessing time and communication time for deriving a priority
value for each task. As a result, a good schedule length can-
not be obtained if the job is data-intensive or has a large dis-
persion among task sizes and data sizes. On the other hand,
in task clustering for heterogeneous systems, each task be-
longs to a task cluster. Each task cluster is assigned to a
processor and each task is scheduled in order to minimize
the schedule length. Though a task clustering method is
known as one of the promising methods in homogeneous
systems, a good schedule length cannot be obtained in het-
erogeneous systems because it assumes a temporal homo-
geneous system for deriving each clustering priority.

We proposed a task clustering method for heteroge-
neous systems for effective use of processors in [12], the
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objective of which was to minimize the schedule length us-
ing a small number of processors. The method proposed
in [12] firstly derives the lower bound of the total execu-
tion time of tasks in a cluster to regulate the number of
processors. Then each task is clustered in order to mini-
mize the schedule length by reducing the Worst Schedule
Length (WSL). According to the literature in [13], mini-
mizing WSL leads to the reduction of both the lower bound
and the upper bound of the schedule length. Then each task
is ordered by Ready Critical Path (RCP) scheduling[14] on
each assigned processor. However, there is no criteria to
minimize WSL in the task scheduling. In this paper, we
propose a task scheduling to minimize WSL after the task
clustering proposed in [12] has been finished. Experimen-
tal results in a real environment show that the proposed task
scheduling outperforms the method in [12] in terms of the
schedule length. This paper is an extension of work origi-
nally presented in the 19th International Conference on Ad-
vanced Communications Technology(ICACT2017)[15].

2 Assumed Model

2.1 Job Model
An assumed job is expressed as a Directed Acyclic Graph
(DAG), which is known as workflow type job. Let
G = (V, E), where V is the set of tasks and E is the set of
edges (data communications among tasks). An i-th task is
denoted as ni. Let w(ni) be the workload of ni, i.e., w(ni)
is the sum of unit times taken for being processed by the
reference processor. We define the data dependency and di-
rection of data transfer from ni to n j as ei, j. And c(ei, j) is
the sum of unit times taken for transferring data from ni to
n j over the reference communication link.

One constraint imposed by a DAG is that a task can-
not be executed until all data from its predecessor tasks ar-
rive. For instance, ei, j means that n j cannot be started until
the data from ni arrives at the processor that executes n j.
And let pred(ni) be the set of immediate predecessors of
ni, and suc(ni) be the set of immediate successors of ni. If
pred(ni) = ∅, ni is called START task, and if suc(ni) = ∅, ni

is called END task. If there are one or more paths from ni

to n j, we denote such a relation as ni ≺ n j.

2.2 System Model
We assume that each computer is completely connected
to others, with non-identical processing speeds and non-
identical communication bandwidths. The set of proces-
sors is expressed as P = {p1, p2, . . . , pn} and let the set of
processing speeds in pi be αi. As for data communication
among computers, let the communication bandwidth of pi

be βi. Since the actual communication speed depends on
the bottleneck in the network path, suppose the communi-
cation speed is the minimum value in the two bandwidths
among pi and p j, i.e., Li, j = min{βi, β j}, where Li, j is the
communication speed among pi and p j.

The processing time in the case that nk is processed on
pi is defined as

tp(nk, αi) = w(nk)/αi. (1)

The data transfer time of ek,l over βi, j is defined as

tc(ek,l, Li, j) = c(ek,l)/Li, j. (2)

This means that both processing time and data transfer time
are not changed with time, and suppose that data transfer
time within one computer is negligible. In general, the com-
munication setup time for the preparation, denoted by Ok

occurs before pk sends the data. If c(ei, j) is sent from pk to
pl, the communication time is defined by Ok and the com-
munication speed Lk,l; in particular, Lk,l = min {βk, βl} and
the communication time is given by

tc(ei, j, Lk,l) = Ok + c(ei, j)/Lk,l. (3)

We assume the communication setup time is negligible, i.e.,
Ok = 0 for ∀pk ∈ P.

3 Related Work
In this section, we discuss existing methods for Directed
Acyclic Graph (DAG) scheduling in heterogeneous sys-
tems. We also clarify their disadvantages when they are
applied to systems with a large number of processors and
when not all processors are used for execution. DAG
scheduling for heterogeneous systems is categorized into
two classes in terms of the task assignment policy: list-
based heuristics [3, 4, 5, 16, 17] and task clustering [7, 8, 9,
10, 11].

For list-based heuristics, both HEFT[3] and Predict Ear-
liest Finish Time (PEFT)[4] use the average processing time
and average communication time to derive the scheduling
priority for each free task whose predecessor tasks have
been scheduled. According to the HEFT algorithm, the
scheduling priority of task nk is based on the path length
from nk to the END task, which is denoted by rank∗u(nk) as
follows:

rank∗u(nk) = tp(nk, αi) + tc(ek,l, Li, j)

+ max
nl∈suc(nk)

{
rank∗u(nl, α j)

}
. (4)

In the set of free tasks, the task with the maximum ranku

value is chosen and assigned to the processor to minimize
the completion time of the task using an insertion-based
policy. PEFT[4] uses an Optimistic Cost Table (OCT); the
OCT value of task nk assigned to pp is the longest path
from nk to the END task in the set of paths starting from
nk, provided that each path length assumes the minimum
length in the processor assignment combinations when nk

is assigned to pp. The scheduling priority of nk in PEFT
is the average OCT value of nk through all of the proces-
sors in P. One difference between HEFT and PEFT is
whether the actual processor assignment is considered dur-
ing the prioritizing phase. Another difference is that PEFT
uses the average value. In Constrained Earliest Finish Time
(CEFT)[5], the pruning phase is performed first. In the
pruning phase, the longest path, called the Constrained Crit-
ical Path (CCP), which is derived from the average process-
ing time and average communication time, is pruned from
the DAG. Then, the pruned DAG is traversed, and the new
CCP is pruned. Pruning continues until all of the tasks are
pruned. Tasks in a CCP are assigned to the same processor
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where their completion times are minimized. The Minimiz-
ing Schedule Length (MSL) algorithm[16] uses Mean Exe-
cution Time (MET) and Total Communication Time (TCT)
for the scheduling priority derived by MET+TCT. They are
calculated based on the average processing time and the
average communication time. The Heterogeneous Selec-
tion Value (HSV) algorithm[17] derives rank∗u values for all
processors for each task. Then the average rank∗u value is
calculated as hranku. The scheduling priority in HSV is de-
rived by the out degree times hranku, which reflects the idea
that a task having larger out degree can have great effect on
the schedule length. Since HEFT, PEFT, CEFT, MSL, and
HSV use the average value calculated from all processor in-
formation, each scheduling priority is not accurate for mini-
mizing the schedule length. Longest Dynamic Critical Path
(LDCP)[6] uses the actual processing time and communi-
cation time for each scheduling priority and outperforms
HEFT in terms of the schedule length. However, LDCP re-
quires a set of DAGs for all processor assignment patterns,
and thus, a high space complexity is required if the system
has a large number of processors.

4 Overview of CMWSL Algorithm
In this section, we present an overview of the clustering-
based task scheduling, called CMWSL (Clustering for Min-
imizing Worst Schedule Length)[12]. CMWSL consists of:
(i) the lower bound of the total processing time is derived to
the processor by which the maximum worst schedule length
(defined as WSL (Worst Schedule Length) in Section 4.1) is
obtained. (ii) several tasks on WSL path are clustered until
the total processing time exceeds the lower bound in order
to minimize WSL. (iii) the execution order for each task on
a processor is decided according to the scheduling priority.
In the following sections, the definition of WSL, the lower
bound, the task clustering procedures, and the task ordering
procedures are presented. For more details, see the litera-
ture in [12].

4.1 WSL (Worst Schedule Length)
Since CMWSL assumes WSL, we present the basics of
WSL. Intuitively, WSL is the maximum execution path
length when each task is executed as late as possible in a
node, provided that there is no data waiting time for each
task once the node starts executing; that is, WSL is the up-
per bound of the schedule length if no data waiting time
occurs for each processor.

Fig. 1 shows an example of WSL derivation. In this
figure, (a) is the state after four tasks have been clustered,
(b) is the meaning for each items in (a), and (c) is the given
system information, where three processors exist, i.e., p1,
p2 and p3. At (a), a virtual processor having the maximum
processing speed (=4) and the maximum communication
bandwidth (=4) is assumed to be assigned to a task. From
this state, WSL is derived by A→ C → F → E → G → H,
i.e., the longest execution path length is obtained when E is
scheduled as late as possible on p2.

If a processor assignment can make WSL smaller, both
the upper bound and the lower bound of the actual sched-

ule length can be made smaller[13]. The schedule length
cannot be obtained until every task execution order is deter-
mined. Thus, at the task clustering phase as a task assign-
ment, the objective is to minimize WSL, not to minimize
the actual schedule length.

4.2 Lower Bound of Total Execution Time
for each Processor

In general, the more tasks are assigned to a processor, the
more data communications can be localized on one proces-
sor. However, to increase the number of assigned tasks on
a processor can lead to the reduction of the degree of par-
allelism. The balance between localization of data com-
munication and parallelism should be considered for min-
imizing the schedule length. Furthermore, imposing the
lower bound can reduce the number of assigned proces-
sors, thereby effective use of computational resources can
be achieved. In CMWSL, the lower bound of the total pro-
cessing time on a processor pp is defined as follows (for
more details, see the literature in [12]):

δopt(αp, βp) =

√√√√√
1
αp

ελ +
wmin

αp

N∑
i=1

∑
nk∈seq≺s−1(i)

w(nk)

, (5)

where

ε =
∑

nk∈seq≺s−1

w(nk) −
N∑

i=1

∑
nk∈seq≺s−1(i)

w(nk),

λ =

(
cmax

βp
−

cmax

βmax
+

wmin

αmax
+

cmin

βmax

)
,

where seq≺s−1 be the set of tasks in a path from a START task
to the END task in the WSL sequence at the workflow after
(s − 1) tasks have been clustered. In seq≺s−1, let seq≺s−1(i) be
the set of tasks that belong to the i-th cluster. In addition,
cmin and cmax are the minimum and maximum data sizes in
seq≺s−1, and wmin is the minimum task size. Finally, αmax

and βmax are the maximum processing speed and maximum
communication bandwidth, respectively.

δopt(αp, βp) means the value when the upper bound of
WSL is minimized. That is, both the lower bound and the
upper bound of the schedule length is minimized by apply-
ing δopt(αp, βp) for each cluster.

Next, we present how the processor to which an assign-
ment unit (we call it as “cluster”) is determined. CMWSL
tries to find WSL path for each clustering procedure. On
WSL path, there are two sub-paths, i.e., clustered path and
unclustered path. Since tasks on a clustered path cannot be
clustered anymore, the only set of tasks by which WSL can
be varied is the unclustered path. Thus, on the unclustered
path, the number of clusters whose total execution time ex-
ceeds δ (the variable for the lower bound), is defined as

N(δ) =
1
αpδ


∑

nk∈seq≺s−1

w(nk) −
N∑

i=1

∑
nk∈seq≺s−1(i),
clss−1(i)<UEXs−1

w(nk)

 , (6)

where δ = δ(αp, βp,Gs), Gs is the DAG after s tasks have
been clustered, and αpδ is the task cluster size of pp. N(δ)
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Figure 1: Example of WSL Derivation

is derived by taking the total workload of tasks on the un-
clustered path. Then, the increase of WSL by generating
clusters by more r clustering steps on the unclustered path,
is defined by

∆WS L∗(M(Gs+r))

≤

N(δ∗)−y∑
i=1

∆LVup
lnr(clss+r(i)) +

N(δ)∑
i=N(δ)−y+1

∆LVup
nlnr(clss+r(i))

+
∑

ek,l∈seq≺s−1 ,

ek,l<seq≺s+r (i)

(
c(ek,l)
Lp,q

−
c(ek,l)
βmax

)

≤ ∆WS L∗up(M(Gs+r)), (7)

where ∆LVup
lnr(clss+r(i)) is the increase of WSL by generat-

ing one linear cluster, i.e., all tasks in the cluster clss+r(i) has
dependencies each other. ∆LVup

nlnr(clss+r(i)) is the increase
of WSL by generating one non-linear cluster, i.e., one or
more tasks in the cluster clss+r(i) has no dependency with
others. WS L∗up(M(Gs+r)) is the upper bound of the increase
of WSL, i.e., ∆WS L∗(M(Gs+r)). δopt in (5), it is obtained by
differentiating ∆WS L∗up(M(Gs+r)) with respect to δ. Then
∆WS L∗up(M(Gs+r)) takes the local minimum value when δ
equals to δopt defined at (5).

From the set of unassigned processors, the processor
having the minimum value of ∆WS L∗up(M(Gs+r)) is selected
as the next assigned target. In this phase, both the lower
bound and the processor to be assigned to a cluster is deter-
mined.

4.3 Clustering Tasks
In the clustering phase, let the selected processor by the
previous section be pp. Then the actual lower bound, i.e.,
δopt(αp, βp) is derived. The unclustered task on WSL path

becomes the start point for clustering. From such a task, the
successor tasks are included in the same cluster until the
total processing time exceeds δopt(αp, βp) in order to mini-
mize WSL.

Fig. 2 shows an example of the task clustering phase in
CMWSL. In this figure, (a) is the state after four tasks have
been clustered, which is the same state as (a) at fig. 1. (b)
in fig. 2 is the path on WSL path, i.e., A, C, E, G, H. In this
path, the clustered path is A→ C → E, and the unclustered
path is G → H. Thus, G becomes the start point for the next
task clustering and p3 is selected as the next assignment tar-
get, because only p3 remained as the unassigned processor.
From this state, the lower bound, i.e., δopt(α3, β3) ≈ 3.96.
Then at (c), G and H are clustered as a cluster cls(G). Since
the total processing time is 3+1 > 3.96, no more task are
included at cls(G). The clustering phase is finished if all
clusters are generated with exceeding each lower bound.

5 Task Ordering
In this section, we present two list-based task ordering cri-
teria in CMWSL. One of the objectives of this paper is to
determine which one is better for minimizing the schedule
length. Thus, the task ordering phase is performed after
the task clustering phase presented in Section 4.3. In this
phase, determining the actual execution order for each task
is performed. Since the assigned processor for each task is
known, the objective in this phase is to minimize the sched-
ule length, not WSL. According to the literature in [18], a
list-based task ordering method was proposed, where the
task in the current WSL sequence is selected from the free
list. Here, “free list” is the set of tasks, whose all immediate
predecessor tasks have already been scheduled. We shall
call the task ordering method as “List maxLV”. The fun-
damental idea behind List maxLV is that the task in WSL
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Figure 2: Example of Task Clustering in CMWSL

sequence can have an effect on the worst schedule length,
i.e., such a task can prolong the actual schedule length de-
pending on the execution ordering. Thus, such a task must
be scheduled as early as possible. The task ordering method
in CMWSL is quite different. The task ordering in CMWSL
selects the task having the minimum DRT (data ready time)
from the free list. DRT of task n j on pq is defined as

DRT (n j, pq) = max
ni∈pred(n j),
pp∈P

{
t f (ni, pp) + tc(c(ei, j), Lp,q)

}
, (8)

where t f (ni, pp) is the finish time of ni on pp, and n j on pq

is supposed to reveive the data from ni on pp. We shall call
the ordering method as “List minDRT”.

Fig. 3 demonstrates behaviors of both List minDRT and
List maxLV. In this figure, A, B, and C are supposed to have
been already scheduled. Thus, the content of the free list is
{E, F,G}. In List minDRT, DRTs of E, F, G are supposed
to be 14, 16, and 6, respectively. Then G, having the min-
imum DRT is selected for assigning an idle time slot. In
List maxLV, the priority is defined as “level”, which is the
longest execution path length when the task is scheduled as
late as possible. In this case, level values of E, F, and G
are supposed to be 24, 12, and 23, respectively. Thus, E is
selected because its level value is the maximum.

6 Experiment
In this section, we present the comparison results in terms
of the response time as the speed-up ratio in a realistic envi-
ronment. The objective of this paper is to confirm the per-
formance of CMWSL in the real environment for practical
use of CMWSL, as well as which list-based task ordering
policy is better in List minDRT and List maxLV. We adopt
Gaussian Elimination DAG and FFT (First Fourier Trans-
form) DAG as target DAGs.

6.1 Comparison Target
As for task ordering methods in CMWSL, we adopt
List minDRT and List maxLV. We name List minDRT in
CMWSL as “CMWSL DRT”, and List maxLV in CMWSL
as “CMWSL LV”. As other comparison targets, HEFT[3],
CEFT[5], HSV[17], and PEFT[4] are adopted, because
these heuristic algorithms are known to derive a good
schedule length with low time complexity, i.e., they are ap-
plicable in a real situation.

6.2 Gaussian Elimination DAG
In this comparison, we prepared 20 nodes that were con-
nected in the local network as a heterogeneous cluster. Ta-
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Table 1: Specification of the Experimental Environment for Gaussian Elimination DAGs.

Node ] CPU Freq. tproc (µs) αp Bandwidth tcomm (µs) βp

1 300MHz 0.157 1.00 100Mbps 2.27 1.00
2 533MHz 0.136 1.16 1Gbps 0.45 5.04
3 800MHz 0.091 1.74 100Mbps 2.15 1.06
4 1.0GHz 0.057 2.74 1Gbps 0.62 3.66
5 1.2GHz 0.051 3.06 1Gbps 0.33 6.88
6 1.5Ghz 0.038 4.14 100Mbps 2.03 1.12
7 1.5Ghz 0.035 4.45 1Gbps 0.55 4.13
8 2.0GHz 0.032 4.92 1Gbps 0.34 6.68
9 2.4GHz 0.029 5.49 100Mbps 0.38 5.97

10 2.4GHz 0.027 5.76 1Gbps 0.27 8.41
11 2.6GHz 0.025 6.21 1Gbps 0.42 5.40
12 2.6GHz 0.024 6.56 100Mbps 2.2 1.03
13 2.8GHz 0.022 7.15 1Gbps 0.22 10.32
14 2.8GHz 0.021 7.61 1Gbps 0.37 6.14
15 2.8GHz 0.021 7.61 100Mbps 1.89 1.20
16 2.8GHz 0.019 8.43 1Gbps 0.28 8.11
17 3.0GHz 0.016 9.83 1Gbps 0.29 7.83
18 3.0GHz 0.015 10.26 1Gbps 0.39 5.82
19 3.0GHz 0.015 10.26 100Mbps 2.11 1.08
20 3.2GHz 0.013 12.42 1Gbps 0.21 10.81

ble 1 presents the specifications of the environment in terms
of processing and communication performance for Gaus-
sian elimination DAGs. In this table, tproc represents the
time taken to process one arithmetic operation, and tcomm is
the time taken to send one byte from the node to the router
in the local network. In particular, tcomm was derived by
RTT/(] o f bytes ∗ 2) of pinging.

As for the DAG structure, we consider one task as a sec-
ond inner loop, i.e., for( j = k + 1; j ≤ N; j + +) at the k ji
Gaussian elimination without pivoting. That is, the same
as the one in Section 5.5.1. Fig. 4 presents one example
of Gaussian elimination DAG at N = 6. According to the
study in [19], the processing time of a task nk, j and the com-
munication time of a data point c(e(k, j),(k+1,m)) are defined as
follows:

w(nk, j) = (2(N − k) + 1)tproc,

c(e(k, j),(k+1,m)) = Op + (N − k + 1)tcom, (9)

where Op is the setup time of pp performed before
sending data, tproc is the processing time for one arith-
metic operation, and tcom is the communication time per

byte. This model was proved to be asymptotic to a real
environment[19]. Then, we can rewrite (9) using tc(nk, j, αp)
and tc(c(e(k, j),(k+1,m)), Lp,q)), as follows:

tp(nk, j, αp) =
(2(N − k) + 1)tproc

αp
,

tc(c(e(k, j),(k+1,m)), Lp,q) = Op + (N − k + 1)
tcom

Lp,q
,

(10)

where tproc and tcomm are the values obtained by the refer-
ence processor. αp is the processing speed ratio when that
of the reference processor is equal to one, and Lp,q is the
communication bandwidth ratio when the reference com-
munication bandwidth is equal to one.

First, we executed the simulation using the information
listed in Table 1.1 We obtain the mapping of a task and a
processor through the results of the simulation. Then, we
implemented the parallelized MPI (MPICH2[20]) program
with non-blocking communication in the C language by
hand-coding each algorithm. For each algorithm, the pro-
gram was executed 100 times, and we averaged the speed-

1Op depends on many factors, including the program coding style and the processor status at the execution. This makes it difficult to specify Op for
each processor. We fixed the setup time Op=0 in the simulation.
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Figure 4: Gaussian Elimination DAG at N = 6.
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Figure 5: Comparison of Speed-Up Ratio for Gaussian Elimination DAGs in a Real Environment.

up ratio defined by the schedule length of “node 20” in Ta-
ble 1, divided by that of each algorithm.

Fig. 5 presents the results in cases of N = 50 and
N = 100. CMWSL-DRT and CMWSL-LV outperform the
other algorithms in both cases (N = 50 and N = 100). We
can see that PEFT, CEFT, and HSV output a smaller sched-
ule length than HEFT. In the real environment, the setup
time is nonzero for each processor, and therefore the com-
munication time can have a greater effect on the schedule
length than in the simulation. Even in such a case, both
CMWSL-DRT and CMWSL-LV have a smaller schedule
length than the other algorithms. As for the comparison be-
tween CMWSL-DRT and CMWSL-LV, it is observed that
CMWSL-DRT outputs better speed-up ratio. In CMWSL-
LV, a task, e.g., nk by which WSL is obtained if it is sched-
uled as late as possible, is selected from the free list. How-
ever, even if nk is selected, the actual schedule length cannot
be made smaller if nk is not a critical task, i.e., nk does not
belong to the actually dominating execution path in terms
of the schedule length. In CMWSL-DRT, selecting a task
having the minimum DRT can lead to the actual schedule
length; that is, scheduling a task, e.g., nk having the min-
imum possible start time can reduce the data waiting time
from nk. As a result, the total idle time for each processor
can be suppressed.

6.3 FFT DAG

In FFT DAG, every task size is equal and every data size
is equal. The FFT DAG used in this comparison contains
m log m butterfly operation tasks, where m is the matrix size,

as in Section 5.5.2. Each task contains the following opera-
tions:

y(k) = ye(k) + ωk ∗ yo(k), 0 ≤ k ≤ m/2 − 1,
y(k + m/2) = ye(k) − ωk ∗ yo(k), 0 ≤ k ≤ m/2 − 1,

(11)

where ye is the FFT of even points and yo is the FFT of odd
points. That is, every task involves the same number of op-
erations. Although the data size among all tasks is the same,
it contains both the real and imaginary parts as double type
variables. Thus, we define each data size as 16 bytes.

Table 2 presents the specification of the environment in
terms of processing and the communication performance
for FFT DAGs. In this table, the “Task Size” is measured
by executing (11) for each processor, while the “Data Size”
is defined by multiplying tcomm from Table 1 by 16. From
this information, αp and βp are derived for the simulation.
Similar to the case of Gaussian elimination DAGs, we ob-
tain the mapping of each task and each processor from the
results of the algorithms in the simulation. Then, we im-
plemented the parallelized MPI program with non-blocking
communication in the C language.

Fig. 6 presents the comparison results in cases of
m = 128 and m = 256, in terms of the speed-up ratio. In
both cases, both CMWSL-DRT and CMWSL-LV outper-
form the other algorithms. However, the differences of
the speed-up ratio between CMWSL (CMWSL-DRT and
CMWSL-LV) and the other algorithms are not large com-
pared with the case of Gaussian elimination, as seen in
Fig. 5. As for the comparison between CMWSL-DRT and
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Table 2: Specification of the Experimental Environment for FFT DAGs.

Node ] CPU Freq. Task Size (µs) αp Bandwidth Data Size(µs) βp

1 300MHz 37.540 1.00 100Mbps 36.32 1.00
2 533MHz 17.114 2.19 1Gbps 7.2 5.04
3 800MHz 13.736 2.73 100Mbps 34.4 1.06
4 1.0GHz 8.438 4.45 1Gbps 9.92 3.66
5 1.2GHz 7.757 4.84 1Gbps 5.28 6.88
6 1.5Ghz 6.672 5.63 100Mbps 32.48 1.12
7 1.5Ghz 6.231 6.02 1Gbps 8.8 4.13
8 2.0GHz 4.003 9.38 1Gbps 5.44 6.68
9 2.4GHz 3.822 9.82 100Mbps 6.08 5.97
10 2.4GHz 3.539 10.61 1Gbps 4.32 8.41
11 2.6GHz 3.221 11.65 1Gbps 6.72 5.40
12 2.6GHz 3.183 11.79 100Mbps 35.2 1.03
13 2.8GHz 3.105 12.09 1Gbps 3.52 10.32
14 2.8GHz 2.994 12.54 1Gbps 5.92 6.14
15 2.8GHz 2.944 12.75 100Mbps 30.24 1.20
16 2.8GHz 2.919 12.86 1Gbps 4.48 8.11
17 3.0GHz 2.896 12.96 1Gbps 4.64 7.83
18 3.0GHz 2.863 13.11 1Gbps 6.24 5.82
19 3.0GHz 2.732 13.74 100Mbps 33.76 1.08
20 3.2GHz 2.556 14.69 1Gbps 3.36 10.81
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Figure 6: Comparison of Speed-Up Ratio for FFT DAGs in a Real Environment.

CMWSL-LV, CMWSL-DRT outputs better results in both
cases (m = 128, 256). Similar to the result obtained in Sec-
tion 6.2, selecting a task having the minimum possible start
time can contribute to reduce the data waiting time for each
processor. In general, the data size among tasks in FFT
DAG is smaller than that in Gaussian Elimination DAG.
This means that the effect of the communication delay is
smaller in case of FFT DAG. Thus, the difference of sched-
ule length among algorithms is also small.

From these results, we can infer that CMWSL can be
applied to the FFT in a real environment.

7 Conclusion and Future Works
In this paper, we confirmed the performance and behaviors
of CMWSL in a real environment using Gaussian Elimi-
nation and FFT program. According to the obtained re-
sults, CMWSL outperforms other list-based task schedul-
ing algorithms in terms of the speed-up ratio, i.e., the
schedule length. We also presented the comparison results
among two task ordering methods, i.e., List minDRT and
List maxLV for CMWSL. In CMWSL, List minDRT was
proved to output a better result than List maxLV. That is,
we can say that the task having the minimum possible start
time should be selected for scheduling.
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